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3 ABSTRACT

_..W-discussthe almost periodicity of bounded solutions ofA

the integrodifferential equation

x' +P*x=f

Here x and f mop R into /, the prime denotes

differentiation, 4 is an n by n matrix valued finite measure

on R, and f is either an almost periodic distribution, or an

almost periodic function in the sense of Bohr, Stephanoff, Weyl or

Besicovitch. In the first three cases we give!a simple sufficient

condition (countability of the set where the characteristic

function of the kernel is not invertible) for bounded solutions to

be almost periodic., This condition is no longer sufficient in the

last two cases, as we shownwith a simple counterexample.
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SIGNIFICANCE AND EXPLANATION

This paper discusses linear systems of equations of the form

(*) x (t) + f [d p(s)]x(t-s) = f(t), t <

Typical examples of such equations are ordinary differential

equations, differential delay equations, retarded functional

differential equations, and integrodifferential equations. Our

main objective consists of finding conditions which imply that all

bounded solutions are almost periodic, i.e. they can be approximated

by sums of periodic functions. It is shown that in most cases

bounded solutions of (*) are almost periodic, provided one uses a

sufficiently strong notion of almost periodicity.
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ON THE ALMOST PERIODICITY OF THE SOLUTIONS OF AN

INTEGRODIFFERENTIAL EQUATION

Olof J. Staffans

1. Introduction

In this paper we study the integrodifferential equation

(1.1) x' + p * x = f.

Here x and f are defined on R and take column vector values

in Cn, V is an n by n matrix valued finite measure on R, and

the equation is supposed to hold in the distribution sense (the

prime stands for differentiation). More specifically, we ask the

following question: If f is almost periodic in some sense, then

is it in general true that every bounded distribution solution x

of (1.1) is also almost periodic in the same sense, or possibly in

some other sense?

The main purpose of this paper is to present sufficient

conditions which imply that bounded solutions are almost periodic.

We essentially restrict ourselves to four notions of almost

periodicity, namely almost periodicity in the distribution sense, in

the Bohr and Stephanoff sense, and almost periodicity with an

absolutely convergent Fourier series. In particular, we exclude the

Weyl and Besicovitch classes of almost periodic functions. There is

a very good reason for doing so; we show with a counterexample that

our main result cannot be extended to these two function classes.

Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041.



The main theorems are presented in Section 2. First a

necessary condition is given for (1.1) to have almost periodic

solutions, and then sufficient conditions are discussed which imply

that all bounded solutions of (1.1) are almost periodic in one sense

or another. The counterexample which we mentioned above is also

stated here.

Section 3 contains a discussion on almost periodic

distributions and Bohr almost periodic functions as well as a number

of preliminary lemmas. Proofs of theorems related to distribution

and Bohr almost periodicity are given in Section 4. Section 5

starts with a short discussion of Stephanoff almost periodicity, and

continues with proof of a theorem which applies when f in (1.1) is

Stephanoff almost periodic. Finally, in Section 6 we define Weyl

and Besicovitch almost periodicity, and show that our main result

cannot be extended to these two function spaces.
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2. Statement of results

The question which we want to discuss is the following: When

is it true that all bounded solutions of (1.1) are almost periodic?

A natural way of beginning the discussion is to first check

what the necessary conditions are which have to be satisfied for

(1.1) to have an almost periodic soluton. One straightforward

result in this direction is the following:

Theorem 1. Let x be an almost periodic Cn-valued distribution,

let j be a finite n ty n matrix valued measue on R, and

define f by (1.1). Then f is an almost periodic distribution.
ijkt

Moreover, the Fourier series ko bke k of f satisfies

iWkt k it
(2.1) bke kiD(k) eI k=l k l k

where k.ol ake is the Fourier series of x,

(2.2) D(w) - iWI + D(w), w e R,

is the identity matrix, and D(w) = f eiWtdU(t).
R

Clearly, Theorem 1.1 gives us a necessary condition on f for

the equation (1.1) to have an almost periodic distribution solution.

First of all, f has to be an almost periodic distribution.
iWkt

Moreover, the Fourier series k- bke of f cannot be

compietely arbitrary, but it has to be of the form (2.1). In

particular, if D(wk) is not invertible for some wk, then the

requirement that bk should belong to the range of D(Wk)

-3-



restricts bk to a proper subspace of C n. For example, in the

scalar case bk has to vanish whenever D(wk) vanishes.

Suppose that f is an almost periodic distribution, and that
iW tikt

the coefficients bk in its Fourier series kol bke belong to

the range of D(wk) for all k. In general it is still true that

there may exist unbounded distribution solutions which satisfy (1.1)

in some sense, and these cannot possibly be almost periodic, because

every almost periodic distribution is bounded in the distribution

sense. However, let us suppose that x is bounded. Is it then

automatically true that x is almost periodic? The answer to this

question dependes on the size of the set Z defined by

(2.3) Z = { e 6 R I D(w) is not invertible }.

If Z is uncountable, then, at least in the scalar case, one can
always construct a smooth bounded solution x to the equation

x' + P * x = 0 which is not almost periodic (see [8, pp. 300 -

301]). This implies that although (1.1) may have almost periodic

solutions, it also has solutions which are not almost periodic (or

it has no solutions whatsoever). On the other hand, if Z is

countable, then all bounded solutions are almost periodic:

Theorem 2. Let p be a finite n by n matrix valued measure,

Define D and Z ty (2.2) and (2.3), and suppose that Z is

countable. Let f be an almost periodic distribution. Then every

bounded distribution solution x of (1.1) is an almost periodic
distribution.

Observe that no claim is made about the existence of a bounded

solution.

-4-



Our proof of Theorem 2 is based on a reduction to the following

result, which has been essentially known for approximately twenty

years (cf. [51 and (91): If the set Z is countable, and if f is

almost periodic in the sense of Bohr, then every bounded solution

x of (1.1) is also almost periodic in the same sense. As a matter

of fact, this result is true even in a slightly stronger form:

Theorem 3. Let pi be of the same type as in Theorem 2, with Z

countable, and let f be almost periodic in the sense of Stephanoff.

Then every bounded distribution solution x of (1.1) is almost

periodic in the sense of Bohr.

In other words, the solution x of (1.1) has better smoothness

properties than the input function f.

Another class of almost periodic functions is the class of

*functions x of the form x(t) 00k~ ake 1Wk, t e R, where

Yk 1 la k1 We call functions x of this type almost periodic

with an absolutely convergent Fourier series, or simply "absolutely

convergent almost periodic". Clearly, by Theorem 1, if one wants a

solution x of (1.1) to be an absolutely convergent almost periodic

function, then necessarily the Fourier series Wk. bke iWktof f

must satisfy

(2.4) I D1l(w k)b k1
kal

One can show with simple counterexamples that if Z is infinite,

then this condition is not in general sufficient for all bounded

solutions of (1.1) to be absolutely convergent almost periodic.

However, if Z is finite, then it is so:

-5-



Theorem 4. Let V be a finite n n matrix valued measure on

R, define D and Z by (2.2) and (2.3), and suppose that Z is

finite. Let f be an almost periodic distribution with a
i kt

Fourier series Ykl bke satisfying (2.4). Then every bounded

distribution solution x of (1.1) is an absolutely convergent

almost periodic function.

So far we have throughout assumed that f in (1.1) is an

almost periodic distribution. There exist Weyl and Besicovitch

almost periodic functions which are not almost periodic in the

distribution sense, and the question arises whether Theorem 2 is

also true for these two classes of almost periodic functions. The

answer is "no", as the following counterexample shows (to improve

the readability we use a rather imprecise formulation; a more exact

formulation is given in Section 5):

Theorem 5. Let f be a continuous function with compact support,

and suppose that f f(t)dt # 0. Then f is Weyl almost periodic
RR t

and its integral f f(s)ds is a bounded uniformly continuous

function, which is not almost periodic even in the sense of

Besicovitch.

Every Weyl almost periodic function is Besicovitch almost

periodic, and therefore Theorem 5 provides a counterexample to

Theorem 2 with the class of almost periodic distributions replaced

by the classes of Weyl and Besicovitch almost periodic functions

(taking P H 0 we get D(w) = iwI; this function is invertible for

every w #0).

-6-
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3. Almost Periodic Distributions and

Bohr Almost Periodic Functions

To shorten the presentation, let us introduce some notations.

We let B(R;Cn) denote the space of Schwartz bounded Cn-valued

distributions on R, and AP(R;Cn) the space of Schwartz almost

periodic distributions. A reader unfamiliar with these two concepts

may consult e.g. Schwartz*s book [10] (which uses a different

notation). The space of bounded, uniformly continuous Cn-valued

functions on R is denoted BUC(R;C n ), and BAP(R;C ) stands for

the set of Bohr almost periodic functions.

We denote the set of finite n by n matrix valued measures

on R by M(R;Cn n). If e e M(R;C nxn) and either f G B(R;Cn)

or f e BUC(R;Cn), then the convolution p , f is well defined,

and it belongs to the same space as f (see [10, p. 203] for the

distribution case).

Our proofs of statements concerning distributions in B(R;C n)

and AP(R;Cn) are based on a reduction to the corresponding

statements concerning functions which belong to BUC(R;Cn) and to

BAP(R;C n ), respectively. One gets from the former case to the

latter by convolving the distributions with a sufficiently smooth

4 i, function. Define

' . e-t  t > 0,IF°
e3.1) e(t) 0 t : 0.

Then e is a L -function whose Fourier transform

-7-iiI



(3.2) 4(w) = (1 + iw)-1  e R.

vanishes nowhere. We denote the m-fold convolution of e with

itself by em*, m > 1. Explicitly,

rn-I

t et, t>0(ml) ! 
e -t  t > 0,

e (t) =

0, t < 0,

and the Fourier transform (e ) of em *  is (e'", (w) = ( m()]
-m 0*

( + iw) - m , w e R. We define e to be equal to 6, the unit

point mass at zero. For each m > 0, the convolution operator

which takes x into em * * x maps B(R;Cn) bicontinuously onto

itself. Its inverse is the operator (1 + d )m .

dt

Lemma 3.1. Let x e B(R;Cn). Then there exists an integer m > 0

m* n n
such that em* * x e BUC(R;Cn Moreover, x e AP(R;C n ) if and

only if em* * x e BAP(R;Cn) for some integer m > 0.

This lemma can be deduced e.g. from [10, (VI,8;6), pp. 205 and

2071 (Schwartz uses the kernel e- Iti, t e R, instead of our

kernel e, but the argument remains the same).

One can define the Fourier series of a function x e AP(R;C )

in the following way. By Lemma 3.1, e M * x e BAP(R;C n ), and it
iWkt

has a Fourier series [kl bke in the sense of Bohr. We define
i)k t

the Fourier series of a to be bkl (1 + iek)m bk That this

definition is independent of the particular value of m which was
chosen follows from the following well known result, and from (3.2):

-8-
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Lemma 3.2. Let e e M(R;Cnxn), and let x P BAP(iR;C n) have the

Fourier series 1 ake . Then , x G BAP(R;C .1 and theilkt
Fourier series of p * x is )kal (wk)ake , where is the

Fourier transform of .

Let us introduce one more notation. When we write x

k=l akekt 6 AP(R;C n ), we mean that x is an almost periodiciWk t
distribution with Fourier series Yk-l ake . With this notation,

the following corollary to Lemmas 3.1 and 3.2 can be written in a

very compact form:

Lemma 3.3. Let e M(R;C n x n )  ad l akei'ktand let 1x = k

AP(R; Cn). Then •x e AP(R;C n) and * x - [k l m)a e  '

where is the Fourier transform of .

This is true, because em * • x k e * X, and Lemmas

3.1 and 3.2 can be applied.

In our proofs of Theorems 1 - 4 it is convenient to rewrite

(1.1) in a form which does not involve a differentiation:

Lemma 3.4. Let e e M(R;C n x ). Then x e B(R;C n ) is a solution of

(1.1) if and only if it satisfies

(3.3) x + a * x = e * f,

where e is the function defined in (3.1), and

- (3.4) a = e * - eI.

Proof. If x 6 B(R;Cn) satisfies (1.1), then (1.1) implies f 6

B(R;C n ). Convolving (1.1) with e in the distribution sense we get

-9-a



e * x' + e 0 x e *f

or equivalently

el x + e * *x -e *f

As e' l e, we get (3.3), (3.4).

Conversely, let x e B(R;Cn) satisfy (3.4). Differentiate

(3.4) to get

x9 + a' *x e * f -f - e *f.

Now

a' - el e'I - -e *m - 61 + eI 61 -at

Ij so we get

x, + .i*x - x - a *x - f - e * f.

Adding (3.3) to this equation we get (1.1).

-10-
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4. Proofs of Theorems 1, 2 and 4

After the preliminary considerations in Section 3 the proof of

Theorem 1 is very easy:

iWkt

Proof of Theorem 1. Let x -kl ake e AP(R;Cn ) be a solution

of (1.1). Then, by Lemma 3.4, it satisfies (3.3). By (3.3) and

Lemma 3.3, e * f e AP(R;C n), and

II  e * f - kl (6I + a)^(wk) ake "

We know that f e B(R;Cn) (see [10, Theorem XXVI, p. 203]). It

follows from Lemma 3.1 that f e AP(R;C n ), and by Lemma 3.2

: f = k al[(w0k)]-l(6I + a) (W k)ake

Now 11 = (1 + i+)-  w C R, and

(p 4.1) (6 1 + a)^ (w) + A (w ( (w1) -() 1 + iw) - DIw), w F- R,

so we end up with the given identity (2.1).

The proof of Theorem 2 is a simple reduction to the uniformly

J continuous case:

_Proof of Theorem 2. Let x e B(RC n ) satisfy (1.1), and let f e
AP(R; Cn ). By Lemma 2.4, f satisfies (3.3). If m is a

sufficiently large integer, then em* * e 6 BUC(R;Cn), and

e (m+l)* * f e BAP(R;Cn). Moreover, y = em* x satisfies

(4.2) y + a y ..



where g = e (m+l)* * f. By Lemma 3.1, x e AP(R;Cn) if (and only

if) y e BAP(R;Cn ). In other words, it suffices to show that if g

e BAP(R;C n), then every solution y e BUC(R;C ) of (4.2) belongs

to BAP(R;Cn). In the scalar case it follows e.g. from [11,

Proposition 4.3] that this is indeed the case, because by (4.1), the

Fourier transform of the kernel in (3.2) is invertible in all

points w 0 Z, and Z was assumed to be countable. The matrix

case is not considered in [11], but the proof given in [111 remains

unchanged in the matrix case. This means that (11, Proposition 4.3]

is valid also in the matrix case, and the proof is complete. I

In the proof of Theorem 4 we use the following fact, which is

an immediate consequence of Theorem 1: The Fourier series of an

almost periodic distribution solution x of (1.1) must be of the

form

iWkt ixkt

(4.3) [ D- (Wk)bke + [ ake
k=l Akez

CO i k t

where I bke is the Fourier series of f, ak belongs to the
k=1

null space of D(Xk) if Ak is not a characteristic exponent of

f, and ak is one of the infinitely many solutions to the

. equation D(Xk)ak = bi, if X = W is a characteristic exponent

of f (if this equation has no solution and Z is countable, then

4j by Theorems 1 and 2, (1.1) has no bounded distribution solution).

Proof of Theorem 4. By Theorem 2, we know that x in Theorem 4

n
belongs to AP(R;C n ). It follows from Theorem 1, (2.4), (4.3), and

iwkt

the fact that Z is finite that the Fouries series 
kl ae k

of x is absolutely convergent. The function y(t) defined by
ktn

y(t) = Yk:l ake t e R, belongs to BAP(R;Cn and it has the

-12-



same Fourier series as 
x. The Fourier series of 

an almost periodic

distribution determines 
it uniquely Ij10, p. 2081, so in the

distribution sense# 
x =Y. and this is exactly what Theoreml 

4

claims.
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5. Proof of Theorem 3

Before proving Theorem 3, let us give a very short description

of the space of Stepahoff almost periodic functions. Given p, <

p < -, we define the "Stephanoff" class of "bounded" function

SP(R;Cn) to consist of those locally integrable functions f whose

Stephanoff seminorm

t+l
If = sup I f If(s) jPds }l/pSp  teR t

is finite. We have Ifj P >lIfsli for every p > 1 [2, p. 72], so

in particular, SP(R;Cn) CS (R;C n ) for every p > 1. The

Stephanoff almost periodic functions SAPP(R;Cn) of order p, 1 <

p < -, can be defined in many different equivalent ways. The

simplest definition is probably the one which says that SAPP(R;Cn)

is the closure in SP(R;Cn) of BAP(R;Cn). It is clear from this

definition, and from the norm inequality given above, that

SAPP(R;C n ) C SAP (R;C n ) for every p > 1.

In this work we shall really only need one elementary fact

about SAPP(R;Cn), namely the following one:

Lemma 5.1. Let 1 < p < -, let f e SAPP(R;Cn), and define e as

in (3.1). Then e * f e BAP(R;C .

Proof. As SAPP(R;Cn) C SAP (R;Cn), it suffices to prove the

lemma when p - 1. By the definition of SAP1(R; Cn ), there is a

sequence of functions gn e BAP(RiCn ) converging to f in

S1(R;Cn). We know from Lemma 3.2 that e g n e BAP(RCn) for all

n. The straightforward computation

-14-
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r
le * f(t) - e * n(t)l = I f e-t ff(t-s) - g n(t-s)] ds

0

e-  f r(t-S) - gn (t-s) I ds
k=O k

Y e-k If- gnlsi,
k=O

shows that e * g n converges to e * f uniformly. This means

that e * f e BAP(R;C n) [3, Theorem V, p. 38]. U

Clearly, Lemmas 3.4 and 5.1 reduce Theorem 3 to a special case

of the following theorem:

Theoem 6 Leta G I(R;nxn)

Theorem 6. Let a 6 L1 (R;C ), and suppose that the set where

I - A(w) is not invertible is countable. Let f e BAP(R;Cn). Then

every bounded distribution solution x of

(5.1) x + a * x = f

is Bohr almost periodic.

The problem can be even further simplified: We know already

that if x e BUC(R;Cn) satisfies (5.1), and the other assumptions

of Theorem 5 hold, then x e BAP(RICn) (cf. the proof of Theorem

2). Thus, it suffices to prove the following lemma:

Lemma 5.2. Let a e L (R;Cnxn), f e BUC(R;Cn), and let x e

B(RCn) satisfy (5.1). Then x e BUC(R;Cn).

Proof. By the Riemann-Lebesgue lemma, I(w) + 0 as w l ±, so we

can find a number fl such that I - A(w) is invertible for Iwi >

n. By Wiener's Tauberian theorem, we can find a function b e

L (RIC nxn ) satisfying

-15-
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(5.2) (1 + b(w)] (I + I(W)] = I, IWi _> .

Let n be a scalar L -function whose Fourier transform has

compact support, and which satisfies (w) E 1 for IwI < ( + 1,

and let 6 be the unit point mass at zero. Convolve (5.1) with

6-n to get

(5.3) (16 + a) * (x - T • x) = f - T * f.

The distribution Fourier transform of x - T * x vanishes on

so by (5.2),

(16 + b) * (16 + a) * (x - T * x) = x - x * X.

Therefore, if we convolve (5.3) with 16 + b we get

(5.4) x - T * x = f - r * f + b * f - b *n * f.

As f e BUC(RCn), the right hand side of (5.4) also belongs to

BUC(R;C n ), and so x - n * x e BUC(R;C n ). The Fourier transform

of n * x has compact support, and therefore n * x e BUC(R;C n ).

This means that x itself belongs to BUC(R;Cn), and the proof is

complete. U

-16-
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6. A Counterexample

In the same way as one defines SAPP(R; Cn) to be the closure

of BAP(R; Cn) in SP(R; Cn), one can define two more classes of

almost periodic functions, i.e. the Weyl and Besicovitch classes, to

be the closures of BAP(R;C n) in the "Weyl" and "Besicovitch"

spaces. For each p, 1 < p < -, we define WP(R; Cn ) and

BP(R; Cn) to be the set of locally integrable functions f whose

Weyl seminorm

1t+t 1/Ifi lim sup I f If(s) Ipds }~~
WP Z-- teR t

respectively Besicovitch seminorm

Ifi lim sup 1- Y If(s) I Pds }l/p

ifinite. Agin Ifi p> f and I0BI~ 1f11B for all p >

1 (2, p. 731, so WP(R Cn) CW (R )n and BV(R; Cn) C B1(R; Cn).

For each fixed p, we have SP(RCn C WP(R;n C:BP(R;~) The

Weyl almost periodic functions WAPP(R; Cn) and Besicovitch almost

periodic functions BAPP(R; Cn) can be characterized by the fact
that they are the closures of BUC(R; Cn) in WP(R; Cn) andn

WAP(R;Cn)CBAPP(R; Cn), and that WAPP(R; Cn) C:WAP (R C ) and

BAP(R;C BA1 (R;C n for all p > 1.

With the new notations we can rewrite Theorem 5 into theI,~. following, slightly more general form:

-17-



Theorem 5'. Let 1 < p < -, and let f e LP(R)Cn  have compact

support and satisfy f f(s)ds # 0. Then f e WAPP(R;Cn), but its
R

integral f(s)ds does not belong to BAPP(RCn).

The first claim in Theorem 5' is obvious, because trivially,

if f e LP(RCn), then jfIW - 0, so f e WAPP(R;Cn). The second

claim is a consequence of the following fact:

Lemma 6.1. Let f be continuous on R with walues in Cn, let

the limits f(--) and f(-) exist, and suppose that f(--) # f(-).

Then f 0 BAPP(RICn).

Proof. AS BAPP(RC C BAp (R;Cn ) for every p > 1, it suffices

to consider the case p = 1.

Suppose that f e BAP1 (R;Cn). In this case Lemma 4 in [2,

p.931 shows that f has a mean value

1
H4(f - lim f f (s) ds.

' t4 -t

An obvious modification of Besicovitch's proof shows that not only

does f have a mean value M(f), it actually has both a left mean

A value

10
M-(f) - lim f f(s)ds

t . -t

and a right mean value

+I t
M+(f) - lim f f(s)ds.

t4m 0

~-18-



Moreover, the two mean values are equal (use the fact that all

functions in BAP(R;Cn) have this property; see [3, p. 44]).

Clearly, the left and right mean values of f in Lemma 6.1 exist,

but they are not equal, and so f 0 BAP (R;Cn). I

I

-19-
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